Models By Examples



Simulating Light

Illumination model
Used to simulate the interaction of light with objects

Objects are
Shaded
Rendered




Continuous Model: Heating




Continuous Model Cooling
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Meteorological
Models



Weather — A Continuous Model
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Hurricanes — A Continuous Model
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Meteorological Models

Horizontal momentum:
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Computational
Biology



Computational Biology

The application of computer science to problems in
biology

(or is it the other way around?? © )

Encompasses:

bioinformatics

computational biomodeling

molecular modeling

protein structure prediction
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Computational Biology

e Bioinformatics

e Discovering and Processing DNA sequences
e Human Genome Project and Others
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Computational Biology

e Computational Biomodeling

e The simulation of biological systems

Knees
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. Cell Metabolism
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Computational Biology

e Protein Structure Modeling

Simulating 3-Dimensional Structure and
Function of Protein Molecules
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Computational Biology

e Molecular Modeling

e Simulating Structure and Function of Chemical
Molecules (usually drug discovery)
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Applications: System Analysis

“Classical” application of simulation
e Telecommunication networks
* Transportation systems

e Electronic systems (e.g., microelectronics, computer
systems)

* Battlefield simulations (blue army vs. red army)
* Ecological systems

 Manufacturing systems

* Logistics

Focus typically on planning, system design



Applications: On-Line Decision Aids

interactive
simulation
environment

analysts and
decision maket

Simulation tool is used for fast analysis of alternate courses of
action in time critical situations
— Initialize simulation from situation database
— Faster-than-real-time execution to evaluate effect of decisions

Applications: air traffic control, battle management
Simulation results may be needed in only seconds




Discrete-Time Models



When To Use Discrete-Time
Models

Discrete models or difference equations are used to
describe biological phenomena or events for which it is

natural to regard time at fixed (discrete) intervals.
Examples:

The size of an insect population in year i;

The proportion of individuals in a population carrying a
particular gene in the j-th generation;

The number of cells in a bacterial culture on day i;

The concentration of a toxic gas in the lung after the i-th
breath;

The concentration of drug in the blood after the i-th dose.



What does a model for such
situations look like?

Let x, be the quantity of interest after n time steps.

The model will be a rule, or set of rules, describing
how x, changes as time progresses.

In particular, the model describes how x
on x, (and perhaps x, ;, X, ,, ...).

depends

n+1

In general: g = ., X 1, X, 5 )

For now, we will restrict our attention to:

Xn+1 = f(Xn)



Terminology

The relation x,,, = f(x,) is a difference equation; also
called a recursion relation or a map.

Given a difference equation and an initial condition,

we can calculate the iterates x,, x, ..., as follows:
X1=f(Xp)

Xz =f(X1)
X3 =f(X2)

The sequence {x,, x;, x,, ...} is called an orbit.



Question

* Given the difference equation x,,, = f(x,)
can we make predictions about the
characteristics of its orbits?



Modeling Paradigm

* Future Value Present Value + Change
Xn+1 = Xn t Axn

* Goal of the modeling process is to find a
reasonable approximation for A4 x, that

reproduces a given set of data or an observed
phenomena.



Example: Growth of a Yeast Culture

The following data was collected from
an experiment measuring the growth of a yeast cultur

Time (hours) Yeast biomass Change in biomass
n Pn Apn = Pn+1 - Apn
0 9.6 8.7
1 18.3 10.7
2 29.0 18.2
3 47.2 23.9
4 71.1 48.0
5 119.1 55.5
6 174.6 82.7
7 257.3




Change in Population is Proportional to the
Population

Change in biomass vs. biomass
Ap“n APy = Pps1 - P~ O5pn
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Explosive Growth

* From the graph, we can estimate that
AP, = Ppeg - Pr, ~ 0.5p, and we obtain the model

Pn.;=p,+05p, =15p,

The solution is:

p,.;=1.5(1.5p, ;) =1.5[1.5(1.5p, ;)] =... = (1.5)"1 p,
= pn = (15)np0

This model predicts a population that increases forever.

Clearly we should re-examine our data so that we can
come up with a better model.



Example: Growth of a Yeast Culture Revisited

Time (hours) Yeast biomass Change in biomass
n Pn APy = Ppaa - APy
0 9.6 8.7
1 18.3 10.7
2 29.0 18.2
3 47.2 23.9
4 71.1 48.0
5 119.1 55.5
6 174.6 82.7
7 257.3 93.4
8 350.7 90.3
9 441.0 72.3
10 513.3 46.4
11 559.7 35.1
12 594.8 34.6
13 629.4 11.5
14 640.8 10.3
15 651.1 4.8
16 655.9 3.7
17 659.6 2.2
18 661.8




Yeast Biomass Approaches a
Limiting Population Level

700 [ eo0o

Yeast biomass
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Time in hours

The limiting yeast biomass is approximately 665.



Refining Our Model

Our original model:  Ap, = 0.5p,

Ph+1 = 1.5P,

Observation from data set: The change in biomass
becomes smaller as the resources become more
constrained, in particular, as p,, approaches 665.

Our new model:  A4p, = k(665- p,,) p,
Ph+1=Pn T k(665_ pn) Pn



Testing the Model

* We have hypothesized Ap, = k(665-p,) p, ie, the
change in biomass is proportional to the
product (665-p,) p,, with constant of
proportionality K.

» Let’s plot 4p, vs. (665-p,) p, to see if there Is
reasonable proportionality.

 |If there Is, we can use this plot to estimate K.



Testing the Model Continued

Change in biomass
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Our hypothesis seems reasonable, and the constant of
Proportionality is kK ~ 0.00082.



Comparing the Model to the Data

Our new model: p,,; = P, + 0.00082(665-p,,) P,
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The Discrete Logistic Model

Xn+1=Xp T k(N ) Xn) Xn

* Interpretations

— Growth of an insect population in an environment with
limited resources
* X, =number of individuals after n time steps (e.g. years)
* N =max number that the environment can sustain

— Spread of infectious disease, like the flu, in a closed
population

* X, = number of infectious individuals after n time steps (e.g.
days)

* N = population size



WHAT HAVE WE OBSERVED 2

ARE OTHER FUNCTIONS SIMILAR, ¢




PRINCIPLE

)

%(X) = ZOO:CKX“ =C +CX+ CX + C}xﬁ
FOR SOME {C,}




DEFINITION

THE TAYLOR SERIES OF §® AT x=0 Is:
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