Basic Physics

Lecture 4: Fluid

รวบรวมและเรียบเรียงโดย อ. วรรณพงษ์ เตรียมโพธิ์

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ ม. มหิดล

Many of the following figures or pictures are copied from open sources at the Web or Else. I do not claim any intellectual property for the following materials.

Topics

- 0. Nature of Science and physics
- 1. Mechanics
- 2. Temperature and Heat
- Fluid
- 4. Waves
- 5. Sound and hearing
- 6. Optics and visualization
- 7. basic electromagnetism
- 8. basic quantum mechanics
- 9. atomic physics
- 10. basic nuclear physics and radioactivity

WATER BALANCE

The balance between intake and excretion of fluids.

Angiotensin II: This is produced consequent to the release of renin by the kidney (eg in response to renal hypotension

Simplicity is the major feature needed in physiological basic concepts.

Eyeball

Viscosity and Poiseuille's Law

A hypotensive patient requires immediate infusion of intravenous saline. If the goal is to infuse the saline as fast as possible, which is the preferred route of administration: a standard triple lumen central line (length 20cm, radius of each lumen 0.84mm), or a standard 16 gauge peripheral IV (length 4cm, radius 1.2mm)?

Pressure

weight = mg

Static fluid pressure does not depend on the shape, total mass, or surface area of the liquid.

Pressure =
$$\frac{\text{weight}}{\text{area}} = \frac{\text{mg}}{\text{A}} = \frac{\rho \text{Vg}}{\text{A}} = \rho \text{gh}$$

Hydrostatic Pressure

Pressure of liquid is same at any given depth below surface regardless of shape of container.

Copyright © 2006 Paul G. Hewitt, printed courtesy of Pearson Education Inc., publishing as Addison Wesley.

Calculate Fluid Pressure

• $P = \rho \cdot g \cdot h$ Units: N/m^2 or Pa

 Air pressure at sea level is 14.7 psi = 760 mm Hg = 101 kPa = 1 atm.

• ρ of H₂O is 1000 kg/m³

Archimedes principle indicates that the upward bouyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanies. **Archimedes Syeacuse formulated** this principle, which bears his name.

The net force of the fluid on the cylinder is the buoyant force $\vec{F}_{\rm B}$.

 $F_{\rm up} > F_{\rm down}$ because the pressure is greater at the bottom. Hence the fluid exerts a net upward force.

Copyright © 2007, Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Pascal's Principal

The forces on the walls in bottle A is equal at any given depth

Pascal's Principal:

A change in pressure at any point in a fluid is transmitted equally in all directions

$$F_1 d_1 = F_2 d_2$$

$$d_1 = \frac{F_2}{F_1} d_2 = \frac{A_2}{A_1} d_2$$

You have to pay for the multiplied output force by exerting the smaller input force through a larger distance.

Archimedes' Principle and Buoyancy

What acceleration will a completely submerged object experience if its density is three times that of the fluid in which it is submerged?

$$\Sigma F = m a$$

$$F_{weight} - F_{buoyancy} = m_{obj} a_{obj}$$

$$(m_{obj}g) - (\rho_{fluid}V_{obj}g) = m_{obj} a_{obj}$$

$$(3\rho_{fluid}V_{obj}g) - (\rho_{fluid}V_{obj}g) = (3\rho_{fluid}V_{obj}) a_{obj}$$

$$3g - g = 3a_{obj}$$

$$a_{obj} = \frac{2}{3}g = \frac{2}{3}(9.8 \text{ m/s}^2) = 6.5 \text{ m/s}^2$$

The Continuity Equation

Steady-state flow caveat: While the Bernoulli equation is stated in terms of universally valid ideas like conservation of energy and the ideas of pressure, ...

Bernoulli Equation

➤ Example ©1

Consider the flow of air around a bicyclist moving through still air with velocity as is shown in Fig. Determine the difference in the pressure between points 1 and 2.

Figure 1

Viscous fluid

Figure 2. Fluid exchange occurs across capillaries according to hydrostatic and colloid osmotic pressures maintained between the extracellular and intravascular compartments.

