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Magnetic Field Sources 

Magnetic fields are produced by electric currents, which can be macroscopic currents 

in wires, or microscopic currents associated with electrons in atomic orbits. 



Magnetic Field due to a Long Straight Wire: 

Fig. 29-3 Iron filings that have been sprinkled onto 

cardboard collect in concentric circles when current is 

sent through the central wire. The alignment, which is 

along magnetic field lines, is caused by the magnetic 

field produced by the current. (Courtesy Education 

Development Center) 

The magnitude of the magnetic field at a perpendicular 

distance R from a long (infinite) straight wire carrying a 

current i is given by 



 Calculating the Magnetic Field due to a Current 

 

 

Symbol m0 is a constant, called the 

permeability constant, whose value is 

 

 

 

In vector form 

# 1820, Hans Christian Oersted, electric currents and compass 
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Biot-Savart Law 
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d a R Verified experimentally 

At any point P the magnitude of the magnetic 

field intensity produced by a differential 

element is proportional to the product of the 

current, the magnitude of the differential 

length, and the sine of the angle lying 

between the filament and a line connecting 

the filament to the point P at which the field is 

desired; also, the magnitude of the field is 

inversely proportional to the square of the 

distance from the filament to the point P.  The 

constant of proportionality is 1/4 

Biot-Savart = Ampere’s law for the current element. 
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The total current I within a transverse  

Width b, in which there is a uniform 

surface current density K, is Kb. 

 

 

 

 

 

 

 

For a non-uniform surface current 

density, integration is necessary. 

Alternate Forms H S
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Biot-Savart Law B-S Law expressed in terms of distributed sources 



Magnetic Field due to a Long Straight Wire: 



 Magnetic Field due to a Current in a Circular Arc of Wire: 



Example, Magnetic field at the center of a circular arc of a circle.: 



Example, Magnetic field off to the side of two long straight currents: 



Ampere’s Law 



• Several compasses are placed in a loop in a horizontal 

plane near a long vertical wire.   

– When there is no current in the wire, all compasses in the 

loop point in the same direction (the direction of the Earth’s 

magnetic field). 

– When the wire carries a strong steady current I, the compass 

needles will all deflect in a direction tangent to the circle. 



• The direction of the deflection is determined by 

the right hand rule:  if the wire is grasped in the 

right hand with the thumb in the direction of the 

current I, the fingers curl in the direction of the 

magnetic field B produced by the current in the 

wire. 

• When the current I is reversed, the direction of 

the deflection in the compasses will also reverse. 

• The compass needles point in the direction of the 

magnetic field B, therefore, the lines of B form 

circles around the wire as previously discussed. 



• The magnitude of B is the same everywhere on a 

circular path centered on the wire and lying in 

the plane that is perpendicular to the wire. 

• The magnetic field B is directly proportional to 

the current and inversely proportional to the 

square of the distance from the wire (as 

described in the Biot-Savart law). 

• For a circular path surrounding a wire, divide the 

circular path into small elements of length ds and 

evaluate the dot product B•ds over the entire 

circumference of the circle.  

 



B field of large current loop 
• Electrostatics – began with sheet of electric monopoles 

• Magnetostatics – begin sheet of magnetic dipoles 

• Sheet of magnetic dipoles equivalent to current loop 

• Magnetic moment  for one dipole m = I a    area a 

     for loop M = I A  area A 

 

 

 

 

 

• Magnetic dipoles  one current loop 

• Evaluate B field along axis passing through loop 
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Ampere’s Circuital Law 

The magnetic field in space around an electric current is proportional to the electric 

current which serves as its source, just as the electric field in space is proportional to 

the charge which serves as its source.  



 

• The vectors ds and B are 
parallel to each other at 
each point: 

 

 

 

 

 

• Integrate around the 
circumference of the 
circle.  Pull B out in 
front of the integral 
because it is constant at 
every point on the 
circumference of the 
circle. 
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• The equation for the magnetic field B around a 

straight conductor is: 

 

• The integral                         is the circumference 

of the circle.  

• Ampere’s law: 
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• Ampere’s law applies to any closed path 

surrounding a steady current. 

• Ampere’s law states that the line integral B•ds 

around any closed path equals µo·I, where I is 

the total steady current passing through any 

surface bounded by the closed path. 

• Ampere’s law: 

 

 

• Ampere’s law only applies to steady currents. 
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• Ampere’s Law is used for calculating the 
magnetic field of current configurations with a 
high degree of symmetry just like Gauss’ law is 
used to calculate the electric field of highly 
symmetric charge distributions. 

• The line that is drawn around the conductors to 
determine the magnetic field is called an 
Amperian loop. 

• The direction of the magnetic field B is assumed 
to be in the direction of integration. 

• Use the right hand rule to assign a plus or minus 
sign to each of the currents that make up the net 
enclosed current Ienclosed. 



• Curl the fingers of the right hand around the Amperian 

loop in the direction of integration. 

– A current passing through the loop in the direction of the 

thumb is assigned a plus sign. 

– A current passing through the loop in the opposite direction of 

the thumb is assigned a minus sign. 

• If B is positive, the direction we assumed for B is 

correct; if B is negative, neglect the minus sign and 

redraw B in the opposite direction. 



Curl your right hand around the Amperian loop, 

with the fingers pointing in the direction of 

integration. A current through the loop in the 

general direction of your outstretched thumb is 

assigned a plus sign, and a current generally in 

the opposite direction is assigned a minus sign. 



29.4: Ampere’s Law, Magnetic Field Outside a Long Straight Wire  

Carrying Current: 



29.4: Ampere’s Law, Magnetic Field Inside a Long Straight Wire  

Carrying Current: 



Example, Ampere’s Law to find the magnetic field inside a long cylinder of 

current. 



Solenoids and Toroids: 

Fig. 29-17 A vertical cross section through 

the central axis of a “stretched-out” 

solenoid. The back portions of five turns 

are shown, as are the magnetic field lines 

due to a current through the solenoid. Each 

turn produces circular magnetic field lines 

near itself. Near the solenoid’s axis, the 

field lines combine into a net magnetic 

field that is directed along the axis. The 

closely spaced field lines there indicate a 

strong magnetic field. Outside the solenoid 

the field lines are widely spaced; the field 

there is very weak. 



The Magnetic Field of a Toroidal Coil 

• A toroidal coil consists of 

N turns of wire wrapped 

around a donut-shaped 

structure.  Assuming that 

the turns are closely 

spaced, determine the 

magnetic field inside the 

coil, a distance r from the 

center. 
 



• To determine the magnetic field B inside the 

coil, evaluate the line integral B•ds over an 

Amperian loop of radius r. 

• The magnetic field B is constant along the 

Amperian loop of radius r and tangent to the 

loop at every point on the loop. 

• For N loops: 
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• The integral of ds over the closed Amperian 

loop: 

 

 

• Solving for the magnetic field B: 
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• Within the toroidal coil, the magnetic field B 

varies as 1/r, therefore, the magnetic field B is 

not uniform within the coil. 

• If r is large compared with a, where a is the 

cross-sectional radius of the toroid, the magnetic 

field will be approximately uniform inside the 

coil. 

• For an “ideal” toroidal coil in which the turns are 

closely spaced, the magnetic field outside the 

coil is zero (0 T). 

– The net current enclosed by an Amperian loop 

located outside the toroidal coil is 0 A. 



• Ampere’s law returns a value of 0 T for the 

magnetic field outside the toroidal coil. 

• The turns of a toroidal coil actually form a helix 

rather than circular loops, so there is always a 

small magnetic field found outside the toroidal 

coil. 

• For the donut hole, the enclosed current for an 

Amperian loop within the hole area is 0 A, 

therefore, the value for the magnetic field inside 

the donut hole is 0 T. 



Magnetic Field of an Infinite Current Sheet 

• An infinite sheet lying 

in the yz plane carries 

a surface current of 

density Js. 

– The current is in the y 

direction. 

– Js represents the 

current per unit length 

measured along the z 

axis. 

 



• To determine the magnetic field B near the sheet, 

draw an Amperian rectangle through the sheet. 

– The rectangle has dimensions l and w, where the 

sides of length l are parallel to the surface of the 

sheet. 

– The net current through the Amperian rectangle is Js·l 

(the current per unit length times the length of the 

rectangle). 

• Apply Ampere’s law: 
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• The integral of ds over the closed Amperian 

loop should be s = 2·l + 2·w, however, there is 

no component of the magnetic field in the 

direction of the sides w. 

• The integral of ds over the Amperian loop is    s 

= 2·l. 

• Ienclosed = Js·l. 

• Combining the equations: 
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• The magnetic field is independent of the 

distance from the current sheet. 

• The magnetic field is uniform and is parallel to 

the plane of the sheet. 



Solenoids: 

Fig. 29-19 Application of Ampere’s law to a section of a 

long ideal solenoid carrying a current i. The Amperian 

loop is the rectangle abcda. 

Here n be the number of turns per unit length of the solenoid 



Magnetic Field of a Toroid: 

where i is the current in the toroid windings (and is positive for those windings 

enclosed by the Amperian loop) and N is the total number of turns. This gives 



Example, The field inside a solenoid: 



A Current Carrying Coil as a Magnetic Dipole: 



A Current Carrying Coil as a Magnetic Dipole: 

A general form for the magnetic 

dipole field is  

B =
m0

4p

3r̂(m · r̂)-m

r3



Magnetic Field of a Long Wire 

• A long, straight wire of radius R carries a steady 

current Io that is uniformly distributed through 

the cross section of the wire.   

• To determine the magnetic field at a distance r 

from the center of the wire to a point less than or 

equal to R (r < R): 

 



• Draw a circular path (an Amperian loop) of 

radius r centered along the axis of the wire. 

• Based on the symmetry of the circle, B must be 

constant in magnitude and parallel to ds at every 

point on the path of radius r. 

• The total current passing through the Amperian 

loop is not Io; the total current is less than Io. 

• The current is uniformly distributed throughout 

the cross-section of the wire; the enclosed 

current is proportional to the area of the 

Amperian loop. 



• Proportional relationship between current and 

area: 

 

 

 

 

• Applying Ampere’s law: 
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• The magnetic field B 

versus r is shown in the 

figure. 

• Inside the wire, B  0 as      

r  0 and the strength of 

the magnetic field 

increases asbr  R. 

• Outside the wire, the 

magnetic field B is 

proportional to 1/r. 



Magnetic Force on a Current Segment 

 

• A long straight wire 

along the y axis carries 

a steady current I1. 

• A rectangular circuit 

carries a current I2. 

• To determine the 

magnetic force FB on 

the upper horizontal 

section of the rectangle, 

start with the force on a 

small segment of the 

conductor given by: 
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• The magnetic field B is the magnetic field due to 

the long straight wire at the position of the 

element of length ds.   

– This value will change with increasing distance from 

the wire carrying current I1. 

– The equation for the field B at a distance x from the 

straight wire is: 

 

 

 

– The direction of the field is into the page. 

• The current in I·(ds x B) is I2. 
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• Replace ds with dx because the value of x (the 

distance from the wire carrying current I1 to the 

element of length ds) will change as we add up 

the elements of length ds along the x axis. 

• The angle q between dx and B is 90°. 
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• To determine the total force on the upper 

horizontal segment of the rectangular loop, 

integrate from length a to length a + b. 
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• The direction of the force is given by the right hand 

rule:  fingers of right hand in direction of current I2; 

palm facing in the direction of the magnetic field B; 

thumb points in the direction of the magnetic force FB. 

• The direction of the force is up toward the top of the 

page (board). 

• The force on the bottom horizontal segment of the 

rectangular loop is equal in magnitude and opposite in 

direction to the force on the top horizontal segment of 

the rectangular loop. 

• The forces on the sides of the rectangular loop are 

determined using the equations for parallel wires. 



Magnetic vector potential 
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We cannot therefore represent B by e.g. the gradient of a scalar 

since 

 

 

Magnetostatic field, try 
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