Basic Physics

Lecture 3: Temperature and Heat

รวบรวมและเรียบเรียงโดย อ. วรรณพงษ์ เตรียมโพธิ์

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ ม. มหิดล

Many of the following figures or pictures are copied from open sources at the Web or Else. I do not claim any intellectual property for the following materials.

Topics

- 0. Nature of Science and physics
- 1. Mechanics
- 2. Temperature and Heat
- 3. Fluid
- 4. Waves
- 5. Sound and hearing
- 6. Optics and visualization
- 7. basic electromagnetism
- 8. basic quantum mechanics
- 9. atomic physics
- 10. basic nuclear physics and radioactivity

Energy and human life

What is temperature?

Fahrenheit clinical thermometer

What is Temperature, Really?

- Absolute Kelvin temperature is proportional to the average kinetic energy of the atoms in a macroscopic system.
- When atoms collide they tend, on the average, to equalize kinetic energy, so kinetic energy spreads equally over all atoms, when there is thermal equilibrium.
- Zeroth Law of Thermodynamics is a macroscopic consequence of this spreading of kinetic energy through atomic collisions.

High Temperature Low Temperature

Heat transfer

Net heat transfer has ceased

INTRODUCTION

What is Temperature?

Temperature is defined as the degree of hotness or coldness measured on a definite scale. Hotness and coldness are the result of molecular activity. As the molecules of a substance move faster, the temperature of that substance increases.

What is Heat?

Heat is a form of energy and is measured in calories or BTU's (British Thermal Units).

Why temperature is measured as a process variable?

There are changes in the physical or chemical state of most substances when they are heated or cooled. The measurement of temperature is also important for protection of the equipment, as uncontrolled high or low temperatures can cause structural deterioration of pipelines and vessels.

WHAT IS HEAT?

SYSTEM 1

SYSTEM IN A
HIGH ENERGY
DENSITY STATE
(IT CONTAINS
ENERGY, NOT
HEAT)

THIS SYSTEM
CANNOT CONTAIN
HEAT, BUT KINETIC
ENERGY, CHEMICAL
ENERGY, NUCLEAR
ENERGY, OR
GRAVITATIONAL
POTENTIAL ENERGY

HEAT: ENERGY TRANSFERRED FROM A WARMER SYSTEM TO A COLDER SYSTEM

THE ARROW REPRESENTS
HEAT, OR ENERGY WHICH IS
BEING TRANSFERRED FROM
THE SYSTEM 1 (HIGHER
TEMPERATURE) TO THE
SYSTEM 2 (LOWER
TEMPERATURE).
IF IT IS NOT ENERGY IN
TRANSIT, IT IS NOT HEAT.

SYSTEM 2
SYSTEM IN A
LOWER ENERGY
DENSITY STATE
(IT CONTAINS
ENERGY, NOT
HEAT)

THIS SYSTEM
CANNOT CONTAIN
HEAT, BUT KINETIC
ENERGY, CHEMICAL
ENERGY, NUCLEAR
ENERGY, OR
GRAVITATIONAL
POTENTIAL ENERGY

Latent Heat

Heating Curve for Water

Time (s)

HEAT ENGINE

The change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

Change in internal energy Heat added to the system

Work done by the system

1st Law of Thermodynamics

U=3NKT

BUKST

	A→B	B->C	C->A	Entire Cycle
MP	+		•	•
Q				
W		0	+	
	ľ			

PAVA < PCVC < PVB

TA < TC < TB

Efficiency

$$= \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H}$$

Maximum for the Carnot cycle

Extracting heat Q_H and using it all to do work W would constitute a perfect heat engine, forbidden by the second law.

What is Entropy

- A measurement of the degree of randomness of energy in a system.
- •The lower the entropy the more ordered and less random it is, and vice versa.

Examples: gallon of gas, prepared food, sunlight have low entropy. When these are "used" their entropy increases

Entrophy

• the degree of disorder or uncertainty in a system

HOW HEAT IS LOST FROM AN UNINSULATED HOME

Thermal Expansion

Linear expansion

$$\frac{\Delta L}{L_0} = \alpha \Delta T$$

Area expansion

$$\frac{\Delta A}{A_0} = 2\alpha \Delta T$$

Volume expansion

$$\frac{\Delta V}{V_0} = 3\alpha \Delta T$$

Thermal Expansion Formulas

Linear: ΔL = L₀α ΔT

Area: ΔA = 2A_oα ΔT

Volume: ΔV = 3V_oα ΔT or ΔV = V_oβ ΔT

• How much taller is the Eiffel Tower on the hottest day of the summer (25 °C) than the coldest day of the winter (2 °C)? The tower is 324 m tall measured (on the coldest day) from the top of the flagpole. Assume the tower is built of structural steel $\alpha = 12 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$.

Approximate Coefficients of Thermal Expansion at 20°C					
Material	α (10 -6/°C)	β (10 -6/°C)			
Aluminum	23	69			
Concrete	12	36			
Diamond	1	3			
Glass	9	27			
Stainless Steel	17	51			
Water*	69	207			

	Temperature (T)	Entropy (S)	
Volume (V)	Helmholtz Free Energy: A(T,V) = U – TS	Internal Energy: U(S,V)	+ PV
Pressure (P)	Gibbs Free Energy: G(T,P) = U + PV – TS	Enthalpy: H(S,P) = U + PV	

