

Lecture 2: Mechanics

รวบรวมและเรียบเรียงโดย อ. วรรณพงษ์ เตรียมโพธิ์

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ ม. มหิดล

Many of the following figures or pictures are copied from open sources at the Web or Else. I do not claim any intellectual property for the following materials.

- 1. Explain some basic physics concepts, theories, and laws.
- 2. Apply physics knowledges for their learning and living.
- 3. Change attitude toward physics, namely "physics is too difficult"

Topics

- 0. Nature of Science and physics
- 1. Mechanics
- 2. Temperature and Heat
- 3. Fluid
- 4. Waves
- 5. Sound and hearing
- 6. Optics and visualization
- 7. basic electromagnetism
- 8. basic quantum mechanics
- 9. atomic physics
- 10. basic nuclear physics and radioactivity

Statics

Free body diagram showing forearm holding a ball. The biomechanical forces that act on the elbow joint

What is R?

G is the weight of the forearm acting vertically downwards,

B is the biceps force,

R is the joint reaction force.

Biomechanics of Lifting

FLEXION MOMENT = 590 IN*LBS

FLEXION MOMENT = 1220 IN*LBS

L_W = 7 IN L_P = 14 IN

FLEXION MOMENT = 980 IN*LBS

Dynamics

Newton's Laws of Motion

Sir Isaac Newton

- Discovered Law of Universal Gravitation (اکتشف قانون الجذب العام)
- Invented form of calculus
- Many observations dealing with light and optics

"Force is equal to the change in momentum (mV) per change in time. For a constant mass, force equals mass times acceleration."

F=m a

"For every action, there is an equal and opposite re-action."

NEWTON'S FIRST LAW OF MOTION

An object is at rest or in motion unless affected by an external force.

Newton's second law of motion

Acceleration = net force

mass

large mass: small acceleration

Force = mass x acceleration

F = force measured in Newtons $(1 \text{ N} = \text{kg} \cdot \text{m/s}^2)$

- If force acts on a small mass and a large mass, the small mass will accelerate more
- Ex: if you try to push an empty box across the floor, it will accelerate faster if the box is packed with books

Question 2

Same force

Two forces of 6 N and 3 N act upon an object in opposite directions. What would be the acceleration of this object if it has a mass of 100 kg?

A) 0.03 m/s²

B) 0.09 m/s²

C) 0.3 m/s2

D) 0.9 m/s²

Applying Newton's Second Law involves the net force:

$$F_{net} = F\cos(\alpha + \theta) - mg\sin\theta - \mu N$$

Free-body diagram

mgsin0 $N=mg\cos\theta + F\sin(\alpha+\theta)$

 $mg cos\theta$

Figure 17-2 Opposite and Equal Reaction

National Aeronautics and Space Administration

NASA

Four Forces on an Airplane

Example 1 – swimmer pushing on a wall

Free-body Diagram

Standard Mechanics Problems

Real life projectile

Conservation of Angular Momentum

Olympic Physics

 $\overrightarrow{v} = -\overrightarrow{v}_{com}$

 $\vec{v} = \vec{v}_{com}$

(b) Pure translation

(c) Rolling motion

Plato is my friend, Aristotle is my friend, but my greatest friend is truth.

Isaac Newton

More science quotes at Today in Science History todayinsci.com

"INSANITY

IS DOING THE SAME THING OVER AND OVER AND

EXPECTING A

DIFFERENT RESULT."

--ALBERT EINSTEIN

