
Electric Field

Electric field

• Space surrounding an electric charge (an energetic 
aura)

• Describes electric force

• Around a charged particle obeys inverse-square law

• Force per unit charge



Electric Field

Electric field direction

• Same direction as the force on a positive charge

• Opposite direction to the force on an electron



The Field Formulation
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ELECTRIC FIELD
• Qualitatively

• The region of space around a charge where it can exert a 
force of electrical origin on another charge.

• Quantitatively
• The intensity of ELECTRIC FIELD at any point is defined as the 

force exerted per unit charge by a positive test charge kept at 
that point.
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A single point charge q, situated at the origin

2.2.1 Fields lines and Gauss’s law
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Because the field falls off like        ,the vectors get shorter as I go 

father away from the origin,and they always point radially outward. 

This vectors can be connect up the arrows to form the field lines.

The magnitude of the field is indicated by the density of the lines.
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1.Field lines emanate from a point charge symmetrically in all 

directions.

2.Field lines originate on positive charges and terminate on 

negative ones.

3.They cannot simply stop in midair, though they may extend 

out to infinity.

4.Field lines can never cross.

2.2.1 (2)



ELECTRIC LINES OF FORCE

• Are imaginary lines of force such that the tangent to it at any point 
gives the direction of electric field at that point.

• A positive point charge free to move will move in the direction of 
electric field and a negative point charge will move in a direction 
opposite to the direction of electric field along an electric line of 
force.



The lines of force to represent uniform electric field 

are as  shown below 

The electric lines of 

force due to point 

charge q < 0  are as 

shown below 

The electric lines of 

force due to point 

charge q > 0 are as 

shown below 



PROPERTIES OF ELECTRIC LINES OF FORCE

• Start from a positive charge and end in a negative charge.

• The tangent to it at any point gives the direction of electric 
field at that point.

• They never intersect each other

• They tend to contract longitudinally and expand laterally.

• They always enter or emerge normal to the surface of a 
charged conductor.

• They are close together in regions of strong electric field and 
far apart in regions of weak electric field.



Electric Field

Both Lori and the 

spherical dome of the 

Van de Graaff generator 

are electrically charged.



ELECTRIC FLUX
Is the total lines of force passing 

normal to a given surface 

E = E A for uniform electric field

Electric flux is a scalar quantity
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Since in this model the fields strength is proportional to the 

number of lines per unit area, the flux of     (             )  is 

proportional to the the  number of field lines passing through 

any surface .

The flux of E through a sphere of radius r is:
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The flux through any surface enclosing the charge is            

According to the principle of superposition, the total field is 

the sum of all the individual fields: 
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A charge outside the surface would contribute nothing to the

total flux,since its field lines go in one side and out other.
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GAUSS’ THEOREM

States the total electric flux through a 
closed surface (surface integral of 
electric field over a closed surface) is 
equal to 1/o times the total charge 
enclosed by the surface.

Mathematically 
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Turn integral form into a differential one , by applying the 

divergence theorem
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Gauss’s Law in integral form  
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2.2.3 Application of Gauss’s Law
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(b)E is constant over the Gaussian surface
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(a) E point radially outward ,as does

Sol:

Example 2.2    Find the field outside a uniformly charged sphere 

of radius
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1. Spherical symmetry.    Make your Gaussian surface a 

concentric sphere (Fig 2.18)

2. Cylindrical symmetry.  Make your Gaussian surface a 

coaxial cylinder (Fig 2.19)

3. Plane symmetry.         Use a Gaussian surface a coaxial 

the surface (Fig  2.20)

2.2.3 (2)



Example 2.3  Find the electric field inside the cylinder which

contains charge density as 

Solution:
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(by symmetry)



Example 2.4  An infinite plane carries a uniform surface charge.      

Find its electric field.  



Solution:  Draw a ”Gaussian pillbox

Apply Gauss’s law to this surface
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By symmetry, E points away from the plane
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Example 2.5  Two infinite parallel planes carry equal but opposite 

uniform charge densities        .Find the field in 

each of the three regions. 

2.2.3 (5)

Solution:   

The field is (σ/ε0 ), and points to the right, between the plane

elsewhere it is zero. 
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2.3.1  introduction to potential

Any vector whose curl is zero is equal to the gradient of some

scalar. We define a function:

Where     is some standard reference point ; V depends only on the 

point P. V is called the electric potential. 

The fundamental theorem for gradients  
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2.3.2  Comments on potential

(1)The name    

Potential is not potential energy

F qE q V    U F X  

V :  Joule/coulomb      U : Joule



(2)Advantage of the potential formulation 

V is a scalar function, but E is a vector quantity

( )V r ˆ ˆ ˆx y zE E x E y E z  

If you know V, you can easily get E: .E V 

0E  so
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Adding a constant to V will not affect the potential difference 

between two point:

(3)The reference point 

Changing the reference point amounts to adds a constant to

the potential 
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(Where K is a constant)

2.3.2 (3)
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Since the derivative of a constant is zero:

For the different V, the field E remains the same. 

Ordinarily we set
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2.3.2 (4)

(4)Potential obeys the superposition principle

1 2F F F F QE   

1 2E E E  

Dividing through by Q

,

Integrating from the common reference point to p ,

1 2V V V  
(5)Unit of potential

Volt=Joule/Coulomb
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2.3.2 (5)

Example 2.6   Find the potential inside and outside a spherical 

shell of  radius R, which carries a uniform surface

charge (the total charge is q).                       

_



2.3.3 Poisson’s Eq. & Laplace’s Eq.
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2.3.4 The Potential of a Localized Charge Distribution

• Potential for a point charge

• Potential for a collection of charge

E V 
r

V V Edr 
   0V 

2
0 0 0

1 1 1( )
4 4 4

r
r q q q

V r dr
r rr  



   




R

Ri

0

1( )
4

q
V P

R




• Potential of a continuous distribution

for volume charge     for a line charge         for a surface charge          
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2.3.4 (3)

Example 2.7 Find the potential of a uniformly charged spherical

shell of radius R.
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• Is the surface of a charged conductor an 
equipotential?

• Is the electric potential constant everywhere inside a 
charged conductor and equal to its value at the 
surface?



Electric Potential Difference on the Surface of
a Charged Conductor in Equilibrium

• Let A and B be points on the surface 
of the charged conductor 

• Let ds be the displacement from A 
to B. 

• E is always perpendicular to the 
displacement ds. 

So, E · ds = 0

• Therefore, the potential difference 
between A and B is also zero
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Electric Potential Difference on the Surface of a 
Charged Conductor in Equilibrium

• V is constant everywhere on the surface of a charged 
conductor in equilibrium

• ΔV = 0 between any two points on the surface

• The surface of any charged conductor in electrostatic 
equilibrium is an equipotential surface



What about the inside of a charged 
conductor?

• E=0 inside the conductor in equilibrium

• E · ds = 0

• Therefore, the electric potential is constant everywhere 
inside the conductor and equal to the value at the surface.
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Solid Conducting 
Sphere

• r<R V=kq/R        E=0

• r=R V=kq/R        E=kQ/R2

• r>R V=kq/r         E=kQ/r2

Note: 

• V is a Scalar related to energy

• E is a Vector related to force. 



Irregularly Shaped Conductors

• The charge density is high where the radius 
of curvature is small

• The electric field is high at sharp points



Irregularly Shaped Conductors

• The field lines are 
perpendicular to the 
conducting surface 

• The equipotential surfaces 
are perpendicular to the 
field lines 



Electric Potential –What we used so far!

• Electric Potential

• Potential Difference

• Potential for a point charge

• Potential for multiple point charges

• Potential for continuous charge 
distribution
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PRINCIPLE OF A CAPACITOR

• Capacitor is based on the principle that the 
capacitance of an isolated charged conductor 
increases when an uncharged earthed conductor is 
kept near it and the capacitance is further increased 
by keeping a dielectric medium between the 
conductors.



CAPACITANCE OF A PARALLEL PLATE CAPACITOR

Electric field between the plates,

E = /0

But =Q/A

E=Q/A0

Potential difference between the two 
plates , V = Ed = Qd/A 0

Capacitance, C = Q/V

C=A 0/d



CAPACITANCE OF A PARALLEL PLATE CAPACITOR 
WITH A DIELECTRIC SLAB

When a dielectric slab is kept between the plates 
COMPLETELY filling the gap

E’ = E0/K where K is the dielectric constant of the 
medium.

Potential difference 

V’ = E’d = E0d/K=Qd/K 0A

Capacitance C’ = Q/V’ = K 0A/d = KC

when a dielectric medium is filled between the plates 
of a capacitor, its capacitance is increased K times.



DIELECTRIC STRENGTH

•Dielectric strength of a dielectric is the 
maximum electric field that can be applied 
to it beyond which it breaks down.


